Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: covidwho-2325328

RESUMEN

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Humanos , Péptidos , Amiloide/química , Antibacterianos/farmacología , Hemoglobinas
2.
Protein Sci ; 32(6): e4645, 2023 06.
Artículo en Inglés | MEDLINE | ID: covidwho-2298669

RESUMEN

The BRICHOS protein superfamily is a diverse group of proteins associated with a wide variety of human diseases, including respiratory distress, COVID-19, dementia, and cancer. A key characteristic of these proteins-besides their BRICHOS domain present in the ER lumen/extracellular part-is that they harbor an aggregation-prone region, which the BRICHOS domain is proposed to chaperone during biosynthesis. All so far studied BRICHOS domains modulate the aggregation pathway of various amyloid-forming substrates, but not all of them can keep denaturing proteins in a folding-competent state, in a similar manner as small heat shock proteins. Current evidence suggests that the ability to interfere with the aggregation pathways of substrates with entirely different end-point structures is dictated by BRICHOS quaternary structure as well as specific surface motifs. This review aims to provide an overview of the BRICHOS protein family and a perspective of the diverse molecular chaperone-like functions of various BRICHOS domains in relation to their structure and conformational plasticity. Furthermore, we speculate about the physiological implication of the diverse molecular chaperone functions and discuss the possibility to use the BRICHOS domain as a blood-brain barrier permeable molecular chaperone treatment of protein aggregation disorders.


Asunto(s)
COVID-19 , Humanos , Pliegue de Proteína , Amiloide/química , Chaperonas Moleculares/química , Proteínas Amiloidogénicas
3.
Appl Microbiol Biotechnol ; 106(23): 7711-7720, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-2148738

RESUMEN

Microbe (including bacteria, fungi, and virus) infection in brains is associated with amyloid fibril deposit and neurodegeneration. Increasing findings suggest that amyloid proteins, like Abeta (Aß), are important innate immune effectors in preventing infections. In some previous studies, amyloid peptides have been linked to antimicrobial peptides due to their common mechanisms in membrane-disruption ability, while the other mechanisms of bactericidal protein aggregation and protein function knockdown are less discussed. Besides, another important function of amyloid peptides in pathogen agglutination is rarely illustrated. In this review, we summarized and divided the different roles and mechanisms of amyloid peptides against microbes in antimicrobial activity and microbe agglutination activity. Besides, the range of amyloids' antimicrobial spectrum, the effectiveness of amyloid peptide states (monomers, oligomers, and fibrils), and cytotoxicity are discussed. The good properties of amyloid peptides against microbes might provide implications for the development of novel antimicrobial drug. KEY POINTS: • Antimicrobial and/or microbial agglutination is a characteristic of amyloid peptides. • Various mechanisms of amyloid peptides against microbes are discovered recently. • Amyloid peptides might be developed into novel antimicrobial drugs.


Asunto(s)
Amiloide , Antiinfecciosos , Amiloide/química , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/metabolismo , Antiinfecciosos/farmacología , Proteínas Amiloidogénicas , Antibacterianos , Aglutinación
4.
Biochem J ; 479(4): 537-559, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: covidwho-1705036

RESUMEN

Post-acute sequelae of COVID (PASC), usually referred to as 'Long COVID' (a phenotype of COVID-19), is a relatively frequent consequence of SARS-CoV-2 infection, in which symptoms such as breathlessness, fatigue, 'brain fog', tissue damage, inflammation, and coagulopathies (dysfunctions of the blood coagulation system) persist long after the initial infection. It bears similarities to other post-viral syndromes, and to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Many regulatory health bodies still do not recognize this syndrome as a separate disease entity, and refer to it under the broad terminology of 'COVID', although its demographics are quite different from those of acute COVID-19. A few years ago, we discovered that fibrinogen in blood can clot into an anomalous 'amyloid' form of fibrin that (like other ß-rich amyloids and prions) is relatively resistant to proteolysis (fibrinolysis). The result, as is strongly manifested in platelet-poor plasma (PPP) of individuals with Long COVID, is extensive fibrin amyloid microclots that can persist, can entrap other proteins, and that may lead to the production of various autoantibodies. These microclots are more-or-less easily measured in PPP with the stain thioflavin T and a simple fluorescence microscope. Although the symptoms of Long COVID are multifarious, we here argue that the ability of these fibrin amyloid microclots (fibrinaloids) to block up capillaries, and thus to limit the passage of red blood cells and hence O2 exchange, can actually underpin the majority of these symptoms. Consistent with this, in a preliminary report, it has been shown that suitable and closely monitored 'triple' anticoagulant therapy that leads to the removal of the microclots also removes the other symptoms. Fibrin amyloid microclots represent a novel and potentially important target for both the understanding and treatment of Long COVID and related disorders.


Asunto(s)
Amiloide , Anticoagulantes/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19 , Pulmón , SARS-CoV-2/metabolismo , Trombosis , Amiloide/sangre , Amiloide/química , COVID-19/sangre , Fibrina/química , Fibrina/metabolismo , Humanos , Pulmón/metabolismo , Pulmón/virología , Trombosis/tratamiento farmacológico , Trombosis/metabolismo , Trombosis/virología
5.
Int J Biol Macromol ; 197: 68-76, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1587673

RESUMEN

The C-terminal domain of SARS-CoV main protease (Mpro-C) can form 3D domain-swapped dimer by exchanging the α1-helices fully buried inside the protein hydrophobic core, under non-denaturing conditions. Here, we report that Mpro-C can also form amyloid fibrils under the 3D domain-swappable conditions in vitro, and the fibrils are not formed through runaway/propagated domain swapping. It is found that there are positive correlations between the rates of domain swapping dimerization and amyloid fibrillation at different temperatures, and for different mutants. However, some Mpro-C mutants incapable of 3D domain swapping can still form amyloid fibrils, indicating that 3D domain swapping is not essential for amyloid fibrillation. Furthermore, NMR H/D exchange data and molecular dynamics simulation results suggest that the protofibril core region tends to unpack at the early stage of 3D domain swapping, so that the amyloid fibrillation can proceed during the 3D domain swapping process. We propose that 3D domain swapping makes it possible for the unpacking of the amyloidogenic fragment of the protein and thus accelerates the amyloid fibrillation process kinetically, which explains the well-documented correlations between amyloid fibrillation and 3D domain swapping observed in many proteins.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Amiloidosis/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Dominios Proteicos/fisiología , Amiloidosis/genética , Proteasas 3C de Coronavirus/genética , Dimerización , Disulfuros/química , Disulfuros/metabolismo , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Mutación , Polimerizacion , Conformación Proteica en Hélice alfa , Dominios Proteicos/genética , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
6.
Cells ; 10(7)2021 07 13.
Artículo en Inglés | MEDLINE | ID: covidwho-1314588

RESUMEN

Transthyretin (TTR) is a tetrameric protein transporting hormones in the plasma and brain, which has many other activities that have not been fully acknowledged. TTR is a positive indicator of nutrition status and is negatively correlated with inflammation. TTR is a neuroprotective and oxidative-stress-suppressing factor. The TTR structure is destabilized by mutations, oxidative modifications, aging, proteolysis, and metal cations, including Ca2+. Destabilized TTR molecules form amyloid deposits, resulting in senile and familial amyloidopathies. This review links structural stability of TTR with the environmental factors, particularly oxidative stress and Ca2+, and the processes involved in the pathogenesis of TTR-related diseases. The roles of TTR in biomineralization, calcification, and osteoarticular and cardiovascular diseases are broadly discussed. The association of TTR-related diseases and vascular and ligament tissue calcification with TTR levels and TTR structure is presented. It is indicated that unaggregated TTR and TTR amyloid are bound by vicious cycles, and that TTR may have an as yet undetermined role(s) at the crossroads of calcification, blood coagulation, and immune response.


Asunto(s)
Artritis/metabolismo , Enfermedades Cardiovasculares/metabolismo , Osteoporosis/metabolismo , Prealbúmina/metabolismo , Amiloide/química , Amiloide/metabolismo , Amiloidosis/metabolismo , Animales , Humanos , Estrés Oxidativo , Prealbúmina/química , Conformación Proteica , Estabilidad Proteica
7.
Nat Nanotechnol ; 16(8): 918-925, 2021 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1260944

RESUMEN

Minimizing the spread of viruses in the environment is the first defence line when fighting outbreaks and pandemics, but the current COVID-19 pandemic demonstrates how difficult this is on a global scale, particularly in a sustainable and environmentally friendly way. Here we introduce and develop a sustainable and biodegradable antiviral filtration membrane composed of amyloid nanofibrils made from food-grade milk proteins and iron oxyhydroxide nanoparticles synthesized in situ from iron salts by simple pH tuning. Thus, all the membrane components are made of environmentally friendly, non-toxic and widely available materials. The membrane has outstanding efficacy against a broad range of viruses, which include enveloped, non-enveloped, airborne and waterborne viruses, such as SARS-CoV-2, H1N1 (the influenza A virus strain responsible for the swine flu pandemic in 2009) and enterovirus 71 (a non-enveloped virus resistant to harsh conditions, such as highly acidic pH), which highlights a possible role in fighting the current and future viral outbreaks and pandemics.


Asunto(s)
Amiloide/química , Antivirales/farmacología , Compuestos Férricos/química , Filtros Microporos , Nanopartículas/química , Amiloide/farmacología , Antivirales/química , Compuestos Férricos/farmacología , Humanos , Lactoglobulinas/química , Filtros Microporos/virología , Inactivación de Virus/efectos de los fármacos , Virus/clasificación , Virus/efectos de los fármacos , Virus/aislamiento & purificación , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA